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Armstrong Atlantic State University 
Engineering Studies 

MATLAB Marina – Sound Processing Primer 
 
Prerequisites 
The Sound Processing Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic 
operations, built in functions, scripts, variables, arrays, logic expressions, conditional structures, 
iteration, functions, debugging, characters and strings, cell arrays, structures, and file input and 
output. Material on these topics is covered in the MATLAB Marina Introduction to MATLAB 
module, MATLAB Marina Variables module, MATLAB Marina Arrays module, MATLAB Marina 
Logic Expressions module, MATLAB Marina Conditional Structures module, MATLAB Marina 
Iteration module, MATLAB Marina Functions module, MATLAB Marina debugging module, 
MATLAB Marina Character and Strings module, MATLAB Marina Cell Arrays module, MATLAB 
Marina Structures module, and MATLAB Marina File Input and Output module. 
 
Learning Objectives 
1. Be able to use MATLAB to load and save audio signals (.wav files). 
2. Be able to generate audio signals that are tones and sums of tones. 
3. Be able to implement signal processing operations. 
4. Be able to use MATLAB to determine the spectrum of sampled signals. 
 
Terms 
sinusoid, amplitude, frequency, phase, sampling, sampling frequency, filtering, signal 
processing, spectrum, spectrogram, Fourier transform, FFT 
 
MATLAB Functions, Keywords, and Operators 
wavread, wavwrite, audioread, audiowrite, audioinfo, conv, filter, fft, fftshift, sound, soundsc, 
audioplayer, play 
 
Sinusoidal Signals 
The general form of a sinusoid with constant frequency is ( ) ( )cosx t A ωt φ= + , where A is the 
amplitude, ω  is the radian frequency (radians/sec), and φ  is the phase (radians). The frequency 
f in Hertz (cycles/sec) can be found from the radian frequency via 2ω fπ= . The period T of a 

sinusoid is the inverse of the frequency, 1 2πT
f ω

= = . The sinusoid ( ) ( )cosx t A ωt φ= +  with 

phase shift φ  can also be represented by a sinusoid with time shift dt , ( ) ( )( )cos dx t A ω t t= − , 

where dt ω
φ

= − . 
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The general form for a signal that is a sum of sinusoids is ( ) ( )0
1

cos
N

k k k
k

x t A A ω t φ
=

= + +∑ , where 

0A  is the DC term and kA , kω , and kφ  are the amplitude, radian frequency and phase shift of 
the kth sinusoid in the sum of sinusoids. 
 
Plotting Sinusoidal Signals 
To obtain a smooth plot in MATLAB of a sinusoidal signal one needs 10 to 25 points per period 
of the signal. For signals composed of a sum of sinusoids, one needs 10 to 25 points per period 
of the highest frequency sinusoid to obtain a smooth plot. 
 
For example to plot two periods of the signal ( ) ( )cos 200x t tπ= : 

• The frequency of the signal is 200ω π=  radians/sec or 100 Hzf  = . 
• The amplitude is 1 and there is no phase shift. 

• The period of the sinusoid is 1 0 01T .
f

= =  seconds and to obtain 25 points per period, the 

interval between points should be / 25 0 0004T .= seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
Sampling 
Sampling involves periodically measuring a signal. The rate of measurement is called the 
sampling frequency. The sampling frequency sf  is the number of samples (measurements) 
taken per second. To properly represent a signal composed of a sum of sinusoids, one must 
sample at least twice the highest frequency in the signal, i.e.  max2sf f≥  (Nyquist, Shannon). 
 
A signal ( ) ( ) ( ) ( )3cos 200 cos 500 cos 2000x t t t tπ π π= + +  has a maximum frequency of 

max 1000f =  Hz. To properly sample the signal (signal is unambiguously represented by its 
samples), one must sample the signal at 2 1000 2000sf ≥ ⋅ =  Hz. 
 

f = 100;    % frequency of sinusoid 
T = 1/f;    % period of sinusoid 
deltat = T/25; 
% generate time vector and sinusoidal signal 
t = 0.0:deltat:2*T; 
x = cos(2*pi*f*t); 
% plot sinusoid 
figure(1) 
plot(t, x), grid, xlabel('t (sec)'), ylabel('x(t)'); 
 
Figure 1, MATLAB Code to Plot Sinusoid 
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The process of sampling takes a continuous time signal ( )x t  and generates a sequence of 

numbers [ ]x n  corresponding to the samples. The entire sequence is referred to as [ ]x n  and 

the kth sample, denoted [ ]x k ,  is the value ( ) ( / )s sx kT x k f= . 
 
Consider the previous plotting example of Figure 1. The MATLAB signal x is really a sampled 
signal and the sampling frequency used to obtain a smooth plot is 10 to 25 times the highest 
frequency of the signal. The time vector used to evaluate the sinusoid of the plotting example 
of Figure 1 could also be created using sampling notation. 
 
 
 
 
 
 
 
 
 
 
 
 
Because most plotting software linearly interpolates between points to generate the plot 
curves, we need a higher sample rate to obtain smooth plots than is needed to accurately 
represent the signal according to the sampling theorem. 
 
Audio Signals 
Digital audio signals can be obtained by sampling and quantizing analog audio signals or by 
generating them directly using computer hardware/software. 
 
Common digital audio formats are:  
• Uncompressed formats: WAV, AU, PCM 
• Lossless compressed formats: FLAC, ALAC (Apple lossless),  
• Lossy compressed formats: MP3, AAC 
 
Along with the audio samples, digital audio files typically contain information about the 
sampling frequency, number of channels, and bits per channel. WAV files (waveform audio file 
format) are audio files that contain a header that provides information on the number of 
channels (1 for mono, 2 for stereo), sample rate sf , and bits per sample (8 or 16). The 
remainder of the wave file is the audio samples. WAV files can store compressed data but are 
more commonly used to store uncompressed audio data. WAV files support multiple channels, 
sample rates up to the GHz range, and data sizes from 8 bits to 32 bits. 
 

f = 100;    % frequency of sinusoid 
T = 1/f;    % period of sinusoid 
fs = 25*f;    % sampling frequency 
% generate time vector and sinusoidal signal 
t = 0.0:1/fs:2*T; 
x = cos(2*pi*f*t); 
% plot sinusoid 
figure(1) 
plot(t, x), grid, xlabel('t (sec)'), ylabel('x(t)'); 
 
Figure 2, MATLAB Code to Plot Sinusoid (Time Vector via Sampling) 
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CD quality audio is stereo (two channel), 44.1 kHz, and 16-bit LPCM data (LPCM stands for 
linear pulse channel modulation). For LPCM, data is represented as a sequence of amplitude 
values using linear quantization. The 16-bit data for CD audio is stored as a two's complement 
signed integers. A CD quality audio stream requires a 44.1k*2*16 = 1411.2 kbits/sec audio 
stream.  
 
The MATLAB functions wavread and wavwrite can be used to read audio data from WAV 
files and write audio data to WAV files. The MATLAB functions audioread and audiowrite 
can be used to read audio data from a variety of audio file formats including WAV and MP3. 
 
The MATLAB code segment of Figure 3 gives an example of reading from a WAV file and 
plotting the time domain samples. Typical use of wavread involves three return values. In the 
example of Figure 3, dg is a column vector of the audio samples, fs is the sampling frequency, 
and numBits is the number of bits per sample. If the WAV file has multiple channels, the 
audio sample variable will be a multidimensional array. MATLAB will typically represent the 
data read from a wave file as double precision real numbers, although using the optional fmt 
string 'native' in wavread, one can read in the data as uint8 or int16 data. The 
audioread function operates similar to wavread but it only returns the samples and 
sampling frequency. The audioinfo function can be used to obtain the number of bits per 
sample. 
 
 
 
 
 
 
 
 
 
 
 
The MATLAB functions wavwrite and audiowrite allow one to save data to an audio file. 
The typical use of wavwrite and audiowrite are 
wavwrite(sampleData, fs, numBits, filename); 
audiowrite(filename, sampleData, fs, 'BitsPerSample', numBits); 
These MATLAB statements will write the data stored in the variable sampleData to the 
specified filename. The data to be written should be column data. 
 
The MATLAB functions sound, soundsc, and audioplayer are used for playing audio 
data. The sound function plays the signal by sending it directly to the computer's sound card. 
Data is assumed to be real numbers in the range of -1 to 1 and data outside this range is 
clipped. The soundsc function works the same as the sound function except the data is 
scaled so that the signal is played as loud as possible without clipping. The audioplayer 

% dog growl audio signal, samples come in as column vector 
[dg, fs, numBits] = wavread('doggrowl.wav'); 
% create time vector from number of samples and sample rate 
t = ((0:1:length(dg)-1)/fs)'; 
% plot dog growl signal 
figure(1) 
plot(t,dg),xlabel('t (sec)'), ylabel('x(t)'), title('Dog Growl') 
 
Figure 3, MATLAB Code to Read from WAV File 
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function returns an audioplayer object which can be played using the play function. There is 
also a legacy wavplay function that only works in 32-bit Windows operating systems and will 
be eliminated in future MATLAB releases. 
 
Signal Processing 
A filter is a system designed to modify the components of signals. A filter takes a sequence of 
input samples [ ]x n  and transforms them into a sequence of output samples [ ]y n  according to 
some rule. One commonly used filter is a finite impulse response (FIR) filter. FIR filters are 
typically represented by a difference equation or convolution sum. 

[ ] [ ]
0

M

k
k

y n b x n k
=

= −∑  

Where [ ]x n  is the input sequence, [ ]y n  is the output sequence, [ ]x n - D  is [ ]x n  delayed by D 

samples, and kb  are the filter weights or filter coefficients. The number of nonzero weights is 
1L M= + , where M is the filter order. The filter order corresponds to the maximum delay of 

the system. 
 
Computing the output of a FIR filter operation requires a nested loop, an outer loop to run 
through the samples n and an inner loop to run through the summation index of the FIR 
computation for sample n.  If the filter order is small, for example 2, the inner loop can be 
omitted and the filtering for each sample implemented with a single line of code 
[ ] [ ] [ ] [ ]0 1 21 2y n b x n b x n b x n= + − + −  

 
MATLAB has several built in functions for working with discrete-time systems (a FIR filter is a 
discrete-time system).  MATLAB has built in functions: conv and filter for operating on one 
dimensional signals and conv2 and filter2 for operating on two dimensional signals like 
images. Figures 4a and 4b show MATLAB code for computing the output of an order 2 FIR filter 
[ ] [ ] [ ] [ ]1 1 1

3 3 31 2y n x n x n x n= + − + −  to the input x[n]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

% input signal 
fs = 10000; % sampling frequency 
nn = 0:1:99; 
x = 5*cos(2*pi*(500/fs)*nn) + cos(2*pi*(3000/fs)*nn); 
% filter coefficients 
b = ones(1,3)/3; 
% filter using MATLAB filter function 
y = zeros(1,length(x)); 
y = filter(b,1,x); 
 
Figure 4a, FIR Filtering using filter Function 
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MATLAB’s filter function, y = filter(b,a,x),  filters the input x with the filter 
described by the coefficients in the vectors b and a and generates the output y. For FIR filters, 
the b vector is the vector of FIR coefficients and the a vector should be a single one (a = 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For high order filters is not practical to compute the first M outputs separately outside the loop. 
Figure 4c shows an alternative to the code of Figure 4b using a conditional statement to avoid 
computation using inputs prior to n = 0 which for this example is when the input starts. 
 
 
 
 
 
 
 
 
 
 
 
 
Since MATLAB does not support zero or negative indices the loops start at 1 rather than 0 and 
go one higher than in the formulas shown previously (k runs from 1 to M+1 rather than 0 to M). 
 
A more efficient way of handling the problem of negative indices is to pad the input with M 
zeros and use the padded input in place of the input. One must then shift the indices in the 
padded input by M when using them in the FIR filtering code as xpad[n+M]  corresponds to 
x[n]. The implementation of Figure 4d also omits the inner loop as the filter length is small and 
the filter formula can be coded in one line. 
 
 
 
 

% FIR filtering using nested loop, first few samples  
% are special cases as have delay of 2 
yloop = zeros(1,length(x)); 
yloop(1) = b(1)*x(1); 
yloop(2) = b(1)*x(2) + b(2)*x(1); 
for n = 3:1:length(x) 
    for k = 1:1:length(b) 
        yloop(n) = yloop(n) + b(k)*x(n-(k-1)); 
    end 
end 
 
Figure 4b, FIR Filtering Implementation Evaluating Function first M Times Outside of Loop to 
avoid Using Negative Indices, Same x[n] as Figure 4a 
 

yloop2 = zeros(1,length(x)); 
for n = 1:1:length(x) 
    for k = 1:1:length(b) 
        if (n-k >= 0) 
            yloop2(n) = yloop2(n) + b(k)*x(n-(k-1)); 
        end 
    end 
end 
  
Figure 4c, FIR Filtering Implementation using Conditional Structure to Avoid Negative Indices, 
Same x[n] as Figure 4a 
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Spectrum 
Physical world signals such as music or speech are composed of many frequency components 
and it is usually easier to characterize complex signals such as music and speech in terms of 
their frequency content rather than time domain characteristics. The analysis and design of 
signal processing systems is often done in the frequency domain as it if often much easier to 
describe the effect of a system on the signal’s spectrum. 
 
The spectrum of a signal is its frequency content, given as set of complex-amplitude frequency 
pairs or as a plot of amplitude and phase versus frequency. For signals that are a sum of 
sinusoids, the spectrum can be found via inspection. For most periodic signals, the spectrum of 
the signal can be determined from the signal’s Fourier series representation. For signals that 
are not sums of sinusoids nor periodic, we can usually use the Fourier transform to determine 
the spectrum of the signal. 
 

For signals that are a sum of sinusoids ( ) ( )0
1

cos
N

k k k
k

x t A A ω t φ
=

= + +∑  the spectrum is the 

frequency, amplitude, and phase information of each sinusoid in the signal. 
 
For example, the spectrum of ( ) ( ) ( ) ( )2 3cos 200 cos 500 cos 2000x t t t tπ π π= + + +  is  

( )( ) ( ) ( ){ }0 Hz,2 100 Hz,3 , 250 Hz,1 , 1000 Hz,1 . 

 
The spectrum can also be represented as a plot of the complex amplitude of each sinusoidal 
component versus frequency. For signals that are a sum of sinusoids 

( ) ( )0
1

cos
N

k k k
k

x t A A ω t φ
=

= + +∑ , this will give N+1 lines, where each line corresponds to one of 

the sinusoidal components of the signal and the height of line will be equal to the magnitude of 
that sinusoidal component’s complex amplitude. Often the magnitude and phase of the 
complex amplitude will be plotted separately. 
 
The magnitude plot for the signal ( ) ( ) ( ) ( )2 3cos 200 cos 500 cos 2000x t t t tπ π π= + + +  is shown 
in Figure 5. 
 

% FIR filtering, padded input 
xpad = [zeros(1,length(b)-1), x]; 
y2 = zeros(1,length(x)); 
for n = 3:1:length(x)+2 
    y2(n-2) = b(1)*xpad(n) + b(2)*xpad(n-1) + b(3)*xpad(n-2); 
end 
 
Figure 4d, FIR Filtering Implementation using Padding, Same x[n] as used in Figure 4a 
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DFT and FFT 
The discrete Fourier Transform (DFT) takes a sequence of numbers and transforms it into 
complex numbers corresponding to the complex amplitudes of the sinusoidal components of 
the sequence of numbers. The sequence of numbers is typically the samples of a sampled signal 
and the DFT gives the frequency content (spectrum) of the signal represented by the samples. 
In practice the Fast Fourier Transform (FFT) rather than the DFT is used for computing the 
spectrum of sampled signals. The FFT is a more efficient version of the DFT and in some cases 
generates less numerical error. 
 
The discrete spectrum Xk produced by the FFT is the same length as the signal, i.e. the FFT will 
produce an N point discrete spectrum for a signal of length N. The FFT produces two copies the 
spectrum, the first N/2 values of Xk correspond to the complex amplitudes for the positive 
frequencies (0 to fmax) and the remaining values correspond to the negative frequencies (-
fmax to 0). The maximum frequency that can be represented in the spectrum of a signal with N 
samples and duration T is N/(2T). The frequency resolution (how close of frequencies can be 
distinguished from each other) depends on the duration of the signal. The longer the duration 
of the signal, the better the frequency resolution in the computed spectrum and the more 
points (higher sample rate), the higher the maximum frequency in the spectrum is. 
 
The MATLAB fft function will compute the FFT. The fft function takes a time domain signal 
(sampled signal) and returns the discrete spectrum.  Figure 6a shows a MATLAB program that 
computes the spectrum of the signal ( ) ( ) ( ) ( )2 3cos 200 cos 500 cos 2000x t t t tπ π π= + + +  using 
the fft function. Figure 6b shows the signal and Figure 6c shows the spectrum of the signal. 
 
The maximum frequency represented in the computed spectrum of the program of Figure 6a is 
specmax (25k Hz). The maximum frequency that can be represented is often higher than the 
highest frequency of the signal and it may make sense to zoom in on the frequency range of 
interest, in this case only the spectrum from 0 to 3000 Hz is plotted. The frequency resolution 
of the spectrum computed by the program of Figure 6a is df (1.529 Hz). Note that the 
amplitudes in the spectrum are scaled but the relative amplitudes are what we expect for the 
spectrum of this signal. The DC term is scaled by N and the other terms by N/2. 
 
The FFT is more efficient if the number of points is an integer power of 2. The MATLAB function 
nextpow2 determines the next higher power of 2 which is useful for FFT operations. 

 
Figure 5, Spectrum Plot, Magnitude Portion 
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% sampled signal with duration one second 
fmax = 2000; 
fs = 25*fmax; 
t = 0 : 1/fs : 1.0; 
x = 2 + 3*cos(2*pi*100*t) + cos(2*pi*250*t) + cos(2*pi*1000*t); 
 
% spectrum of signal 
N = length(x); 
df = 1/t(end);      % frequency interval in the spectrum 
specmax = (df*N/2); % maximum frequency in the spectrum 
f = [0:1:N-1]*df;   % vector of frequency values for plotting 
Xk = fft(x);        % spectrum values 
 
% plot signal and magnitude of spectrum 
timerange = 1:1:floor(length(x)/10); 
freqrange = find(f <= 3000); 
figure(1) 
subplot(2,1,1), plot(t(timerange),x(timerange)), ... 
    xlabel('t (sec)'), ylabel('x(t)') 
subplot(2,1,2),plot(f(freqrange),abs(Xk(freqrange))), ... 
    xlabel('f (Hz)'), ylabel('|Xk(jw)|') 
 
Figure 6a, MATLAB Code for Computing Spectrum 

 
Figure 6b, Signal (0 to 0.1 seconds) 
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The MATLAB program of Figure 7a illustrates determining the spectrum of a signal read in from 
a WAV file. Figure 7b shows the time domain plot and Figure 7c the magnitude portion of the 
spectrum of the signal from the doggrowl.wav file. Note in the spectrum of Figure 7c that both 
copies of the spectrum are being displayed (spectrum from 0 to 12.5k Hz and mirrored 
spectrum from 12.5 to 25k Hz). Also notice in the time domain plot the signal varies with time 
and we should expect the spectrum to vary with the signal variation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

% dog growl audio signal, samples come in as column vector 
[dg, fsdg, numBits] = wavread('doggrowl.wav'); 
% create time vector from number of samples and sample rate 
L = length(dg); 
tdg = ((0:1:L-1)/fs)'; 
% spectrum of dog growl 
N = 2^nextpow2(L); 
df = fs/N;   % frequency resolution in Hz 
fdg = (0:1:N-1)*df; 
DGk = fft(dg,N)/L;       % N point fft with magnitudes scaled 
% plot dog growl signal and spectrum 
figure(2) 
subplot(2,1,1), plot(tdg,dg), ... 
    xlabel('t (sec)'), ylabel('x(t)'), title('Dog Growl') 
subplot(2,1,2), plot(fdg,abs(DGk),'LineWidth',2), ... 
    xlabel('f (Hz)'), ylabel('|DGk(f)|'), title('Dog Growl Spectrum') 
 
Figure 7a, MATLAB Program for Spectrum of Dog Growl 
 
 

 
Figure 6c, Spectrum of Signal (0 to 3000 Hz) 
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Figure 7b, Dog Growl Signal 
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Figure 7c, Magnitude Spectrum of Dog Growl Signal 
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Spectrogram 
Time varying spectrums are typically handled by performing frequency analysis on a windowed 
signal. The window is moved along the signal and the frequency analysis is repeated for the 
portion of the signal in the window. This is continued for the entire time range of the signal. A 
plot of a time varying spectrum is called a spectrogram. Typically in a spectrogram, the x-axis 
will be time, the y-axis frequency and either color or intensity used to indicate the energy at the 
frequency. 
 
MATLAB has a built in function spectrogram (part of the Signal Processing toolbox) for 
computing the spectrogram of signals. The spectrogram function takes four or five 
arguments in the typical use 
S = spectrogram(xx, window, noverlap, nfft) 
or 
S = spectrogram(xx, window, noverlap, nfft, fs) 
 
Where xx is the signal, window is either the window length if a single value or the window 
values if a vector, noverlap is number of points of overlap for each segment, nfft is 
number of points for the fixed FFT of each segment, fs is the sampling frequency in Hz, and S 
is a 2D array with each column holding the short time spectrum X[k] at time n (time increases 
across columns and frequency increases down rows. The window length and nfft are typically 
the same value and the default window is a Hamming window. The number of points of 
overlap, noverlap, must be less than the window length and is typically 50% to 80% of the 
window length.  The default for MATLAB’s spectrogram plots is to display time on the y axis and 
frequency on the x axis. This can be switched by using an additional argument 'yaxis', 
spectrogram(xx, windowlength, noverlap, nfft, fs,'yaxis') to get time 
on the x-axis and frequency on the y-axis. 
 
The window length and nfft should be an integer power of 2 (the windowed spectrum is 
computing using the FFT) for the best performance and the sampling frequency should be the 
same as used to generate the discrete-time signal. 
 
 
 
 
 
 
 
 
 
Last modified Friday, November 01, 2013 
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